The OSM dataset is a rich database of information about the world. Not only can the data be used to render beautiful and useful maps, it can also be used to do some nifty calculations in conjunction with other open datasets that exist. One such potential use is in cleaning up and improving elevation datasets such as the public domain SRTM or ASTER datasets. Both of these datasets offer elevation coverage over much of the world but they are limited in resolution (SRTM is 90 m per pixel, ASTER is 30 m per pixel).
Although these elevation datasets can be useful for very basic things like drawing 25 m contour lines on topographic maps, if you try to use these elevation models for more sophisticated things like drainage calculations, you will get very weird results due to a number of issues. First, almost no rivers are 30 m wide or more, so the river channel can’t be modeled at all. Second, noise in the elevation datasets often results in river valleys with “bumps” in the river that make it back up and flood large areas that in the real world would really flood because there is a stream draining the water out of the valley. Lastly, in many areas streams, drainage ditches, and other such things often run in close proximity to buildings and other such features. In these areas trying to fix the elevation to correctly predict drainage ends up changing the elevation of buildings as the pixels are so large the whole neighboorhood must be raised or lowered to make the drainage calculations work. The example shown below shows a couple of these issues, and other areas suffer from them in much more signifigant ways.
The original ASTER data at 30 m per pixel.